Supplementary Information

Supplementary Document S1. Search Strategy

PubMed Search

- A. Search 1 HCQ
 - 1. HCQ OR Hydroxychloroquine OR + chloroquine OR CQ
- **B.Search COVID-19**
 - COVID19 OR Coronavirus OR novel coronavirus OR SARS-CoV-2 OR COVID OR COVID-19
- C.Combine 2 AND 3
- C.Apply filters
- -January 2020 May 30 2020
- Systematic reviews, reviews, meta-analysis, clinical trial, randomized controlled trials and trials

Search: HCQ OR Hydroxychloroquine OR chloroquine OR CQ Filters: Clinical Study, Meta-Analysis, Randomized Controlled Trial, Review, Systematic Reviews, in the last 1 year

"HCQ"[All Fields] OR "hydroxychloroquine"[MeSH Terms] OR "hydroxychloroquine"[All Fields] OR "chloroquine"[MeSH Terms] OR "chloroquine"[All Fields] OR "chloroquine s"[All Fields] OR "chloroquines"[All Fields] OR "chloroquines"[All Fields] OR "cost qual"[Journal] OR "cost qual q j"[Journal] OR "commun q"[Journal] OR "caribb q"[Journal] OR "camb q healthc ethics"[Journal] OR "cq"[All Fields]

Translations

Hydroxychloroquine: "hydroxychloroquine"[MeSH Terms] OR "hydroxychloroquine"[All Fields]

chloroquine: "chloroquin"[All Fields] OR "chloroquine"[MeSH Terms] OR
"chloroquine"[All Fields] OR "chloroquine's"[All Fields] OR "chloroquines"[All Fields]

CQ: "Crit Q"[Journal:__jid101653381] OR "Cost Qual"[Journal:__jid101126987] OR
"Cost Qual Q J"[Journal:__jid9602863] OR "Commun Q"[Journal:__jid101580483] OR

"Caribb Q"[Journal:__jid101553695] OR "Camb Q Healthc Ethics"[Journal:__jid9208482] OR "cq"[All Fields]

Search: COVID19 OR Coronavirus OR novel coronavirus OR SARS-CoV-2 OR COVID OR COVID-19 Filters: Clinical Study, Meta-Analysis, Randomized Controlled Trial, Review, Systematic Reviews, in the last 1 year

(((((("covid 19"[Supplementary Concept] OR "covid 19"[All Fields]) OR "covid19"[All Fields]) OR (("coronavirus"[MeSH Terms] OR "coronavirus"[All Fields]) OR "coronaviruses"[All Fields])) OR ((("novel"[All Fields] OR "novel s"[All Fields]) OR "novels"[All Fields]) AND (("coronavirus"[MeSH Terms] OR "coronavirus"[All Fields]) OR "coronaviruses"[All Fields]))) OR (("severe acute respiratory syndrome coronavirus 2"[Supplementary Concept] OR "severe acute respiratory syndrome coronavirus 2"[All Fields]) OR "sars cov 2"[All Fields])) OR "COVID"[All Fields]) OR ((((((("covid 19"[All Fields] OR "covid 2019"[All Fields]) OR "severe acute respiratory syndrome coronavirus 2"[Supplementary Concept]) OR "severe acute respiratory syndrome coronavirus 2"[All Fields]) OR "2019 ncov"[All Fields]) OR "sars cov 2"[All Fields]) OR "2019ncov"[All Fields]) OR (("wuhan"[All Fields] AND ("coronavirus"[MeSH Terms] OR "coronavirus"[All Fields])) AND (2019/12/1:2019/12/31[Date - Publication] OR 2020/1/1:2020/12/31[Date Publication])))

Translations

COVID19: "COVID-19"[Supplementary Concept] OR "COVID-19"[All Fields] OR "covid19"[All Fields]

Coronavirus: "coronavirus"[MeSH Terms] OR "coronavirus"[All Fields] OR "coronaviruses"[All Fields]

novel: "novel"[All Fields] OR "novel's"[All Fields] OR "novels"[All Fields]

coronavirus: "coronavirus"[MeSH Terms] OR "coronavirus"[All Fields] OR "coronaviruses"[All Fields]

SARS-CoV-2: "severe acute respiratory syndrome coronavirus 2"[Supplementary Concept] OR "severe acute respiratory syndrome coronavirus 2"[All Fields] OR "sars cov 2"[All Fields]

COVID-19: "COVID-19"[All Fields] OR "COVID-2019"[All Fields] OR "severe acute respiratory syndrome coronavirus 2"[Supplementary Concept] OR "severe acute respiratory syndrome coronavirus 2"[All Fields] OR "2019-nCoV"[All Fields] OR

"SARS-CoV-2"[All Fields] OR "2019nCoV"[All Fields] OR (("Wuhan"[All Fields] AND ("coronavirus"[MeSH Terms] OR "coronavirus"[All Fields])) AND (2019/12[PDAT] OR 2020[PDAT]))

Scopus

TITLE-ABS-KEY(1. HCQ OR Hydroxychloroquine OR chloroquine OR CQ) AND (COVID19 OR Coronavirus OR novel coronavirus OR SARS-CoV-2 OR COVID OR COVID-19) AND (REVIEW OR SYSTEMATIC REVIEW OR META-ANALYSIS OR METAANALYSIS OR METAANALYSES OR RCT OR CLINICAL STUDY OR RANDOMIZED CONTROLLED TRIAL OR CLINICAL TRIAL) AND (LIMIT-TO (PUBYEAR,2020))

CINAHI

(HCQ OR Hydroxychloroquine OR chloroquine OR CQ) AND (COVID19 OR Coronavirus OR novel coronavirus OR SARS-CoV-2 OR COVID OR COVID-19) AND (REVIEW OR SYSTEMATIC REVIEW OR META-ANALYSIS OR METAANALYSIS OR METAANALYSIS OR METAANALYSIS OR METAANALYSIS OR CLINICAL STUDY OR RANDOMIZED CONTROLLED TRIAL OR CLINICAL TRIAL) AND (LIMIT-TO (PUBYEAR, 2020))

Supplementary Table S2. Characteristics of excluded reviews

Study and year	Date of publications	Title	Objective	Design	Reason of exclusion
Cortegiani et al., 2020	10-March- 2020	A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19	To summarize the evidence regarding chloroquine for the treatment of COVID-19.	Systematic review (SR)	Did not include completed clinical studies on COVID-19
Zhu et al., 2020	17-March- 2020	Systematic Review of the Registered Clinical Trials of Coronavirus	To analyze the characteristics and existing problems of the registered clinical trials	Systematic review (SR)	Did not include completed clinical studies on COVID-19
Singh et al., 2020	22-March- 2020	Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without	The efficacy of chloroquine and hydroxychloroquine, in the	Narrative review	Did not include completed

		diabetes: A systematic search and a narrative review with a special reference to India and other developing countries	treatment of participants with COVID19		clinical studies on COVID-19 Narrative review
Kapoor et al., 2020	30-March- 2020	Role of Chloroquine and Hydroxychloroquine in the Treatment of COVID-19 Infection- A Systematic Literature Review	To summarize the available evidence regarding the role of chloroquine in treating coronavirus infection.	Systematic review (SR)	Did not include completed clinical studies on COVID-19
Gbinigie et al., 2020	7-April- 2020	Should chloroquine and hydroxychloroquine be used to treat COVID-19? A rapid review	To establish the current evidence for the effectiveness of CQ and HCQ in treating COVID-19 infection	Narrative review	Narrative review Did not include completed clinical studies on COVID-19
Pastick et al, 2020	13-April- 2020	Review: Hydroxychloroquine and Chloroquine for Treatment of SARS-CoV- 2 (COVID-19)	A review of all the available evidence of safety and efficacy of HCQ & CQ	Narrative review	Narrative review
Shukla et al., 2020	28-April- 2020	Chloroquine and hydroxychloroquine in the context of COVID-19	To present the available in vitro and clinical data for the role of chloroquine/ hydroxychloroquine in COVID-19 and attempts to put them into perspective, especially in relation to the different risks/benefits particular to each patient who may require treatment.	Narrative review	Narrative review
Hashem et al., 2020	29-April- 2020	Therapeutic use of chloroquine and hydroxychloroquine in COVID-19 and other viral infections: A narrative review	To comprehensively review previous studies which used CQ or HCQ as an antiviral treatment.	Narrative review	Narrative review
Patil et al., 2020	11-May- 2020	A systematic review on use of aminoquinoline for the therapeutic management of COVID-19: Efficacy, safety and clinical trials	Provides a systematic review of mechanism of action, efficacy, and safety of chloroquine and hydroxychloroquine which are being used as therapeutic measure to cure COVID-19 infection.	Systematic review (SR)	Did not include completed clinical studies on COVID-19

Supplementary Table S3. Quality Assessment for Included Reviews

	Me	ethod								e incl R Iten		studies
	1	2	3	4	5	6	7	8	9	10	11	Rating
Takla 2020	1	1	1	1	1	1	1	1	0	0	1	9
Yang 2020	1	1	1	1	0	1	1	1	1	1	1	10
Jankelson 2020	1	1	1	1	0	1	0	0	0	0	0	5
Shamshiri an	1	0	1	1	1	1	1	1	1	1	1	10
Sarma 2020	1	1	1	1	0	0	1	1	1	1	1	9
Singh 2020	1	1	1	1	1	1	1	1	1	1	1	11
Suranagi 2020	1	1	1	1	0	1	1	1	0	0	0	7
Das 2020	1	0	1	1	1	1	1	1	0	0	1	9
Chowdhur y 2020	1	1	1	1	1	1	1	1	0	0	1	9
Chacko 2020	1	1	1	1	1	1	1	1	1	0	1	10
Hernande z 2020	1	1	1	1	1	1	1	1	0	0	0	8
Rodrigo 2020	1	1	1	1	0	0	1	1	0	0	1	7
Wang 2020	1	1	0	1	1	1	0	0	0	0	1	6

Supplementary Table S4: Characteristics of Excluded Primary Studies

Study and date of publication	Country	Reviews	Reason for exclusion
Bessière et al., (1-May-2020)	France	8	Observational studies
Borba et al., (24-April-2020)	Brazil	6, 8, 11, 12	Comparison between two
			different doses of CQ (not
			SOC)
Carlucci et al., (8-May-2020)	USA	9	Observational study
Chorin et al., (1-May-2020)	USA and Italy	8	Observational study
Chorin et al., (3-April-2020)	USA	2, 4, 8, 9, 11, 12,	Observational study
Gao et al., (16-March-2020)	China	7, 13	No data presented
Gautret et al., (11-April-2020)	France	1, 2, 3, 4, 8, 9,	Observational study
		10, 12, 13	
Geleris et al., (7-May-2020)	USA	4, 7, 8, 9, 10, 11	Observational study
Huang et al., (4-May-2020)	China	8	Observational study
Ip et al., (25-May-2020)	USA	11	Observational study
Jiang et al., (12-July-2020)??	China	13	No full text - abstract only
Kim et al., (18-May-2020)	South Korea	9, 11	Observational study
Lee et al., (8-May-2020)	South Korea	9	Observational study
Magnagnoli et al., (23-April-	USA	3, 4, 5, 7, 8, 9,	Observational study
2020)		10, 11,	
Mallat et al., (2-May-2020)	UAE	7, 8, 9, 11	Observational study
Mehra et al., (22-May-2020)	USA	9, 11	Observational study which
			was retracted
Membrillo et al., (9-May-2020)	Spain	8, 9	Observational study
Mercuro et al., (1-May-2020)	USA	8, 10, 11	Observational study
Million et al., (5-May-2020)	France	1, 3, 9, 10, 11,	Observational study
		12, 13	
Molina et al., (17-April-2020)	France	1, 3, 4, 8, 9, 10,	No control group
		12, 13	
Okour et al., (13-May-2020)	USA	9	Duplicate data
Perinel et al., (7-April-2020)	France	12	Observational study
Ramireddy et al., (25-April-	USA	8, 9, 10, 11	Case series
2020)			
Raoult et al., (11-April-2020)	France	8	Case series
Regina et al., (12-May-2020)	Switzerland	9	Observational study
g 5. d.i., (12 May 2020)	Jinzonana		2 300. Tallorial olday

Rosenberg et al., (11-May-	USA	7, 9, 11	Observational study
2020)			
Saleh et al., (29-April-2020)	USA	8, 9, 11	Observational study
Singh et al., (19-May-2020)	USA	9, 11	Observational study
Van den Broek et al., (29-	Netherlands	8	Observational study
April-2020)			
Yu et al., (1-May-2020)	China	7, 8	Observational study
Yu et al., (15-May-2020)	China	11	Observational study
Esper et al.,	Brazil	None	COVID not confirmed by
			PCR
Barbosa et al, (15-April-	Brazil	None	1. Design not clear
2020)			2. Both groups of participants
			received HCQ
Mahevas et al, (14-April-	France	None	Observational study
2020)			
Skipper et al, (16-July-2020)	Canada	None	Covid-19 not confirmed with
			PCR
Cavalcanti et al, 23-July-	Brazil	None	Some participants had
2020)			suspected Covid-19 not
			confirmed by PCR

Supplementary Table S5. Assessment of risk of bias in included experimental studies

Safeguard item	S	S	S	S	S5	S	S	S
	1	2	3	4		6	7	8
	Chen Jun et al.	Chen Z et al.	Gautret et al.	Tang et al. 2020	Huang et al 2020	Horby et al. 2020	Oriol et al. 2020	Chen P.C. et al
1. Data collected after the start of the study was not used to exclude participants or to	1	1	1	1	1	1	1	1
select them into the analysis								

26. Conflict of interests were declared and	0	1	1	1	1	1	1	1
absent		'	'	'	'	'	'	'
27. Participants were randomly allocated to	1	1	0	1	0.	1	1	1
groups with adequate randomisation process					5			
28. Analytic method was justified by study	1	1	0	1	0.	1	1	1
design					5			
29. Computation errors or contradictions	1	1	1	1	1	1	1	1
were absent								
30. There was no data dredging or selective	1	1	1	1	1	1	1	1
reporting of the outcome								
31. All subjects were selected prior to	1	1	0	1	1	1	1	1
intervention/exposure and evaluated								
prospectively								
32. Carry-over or refractory effects were	1	1	1	1	1	1	1	1
avoided or considered in the design of the								
study or were not relevant								
33. The intervention/ exposure period was	1	1	1	1	1	1	1	1
long enough to have influenced the study								
outcome								
34. Dose of intervention/ exposure was	1	1	1	1	1	1	1	1
sufficient to influence the outcome								
35. Length of follow-up was not too long or	1	1	1	1	1	1	1	1
too short in relation to the outcome								
assessment								
Summary count of safeguard items	29	33	16	31	29	33	31	30

Supplementary Fig. 1: Quality Assessment

A: AMSTAR Assessment for Included Reviews

B: MASTER for experimental studies

Supplementary Table S6. Outcomes of Included reviews

Author, date & design	Drug	Mortality	ICU, intubation	Virological Cure	Disease worsening	Adverse events
Shamshirian (28 May 2020) SRMA	HCQ	No significant difference in mortality (RR: 1.13, 95%CI 0.71 - 1.80)	Intubation - no significant differences HCQ - OR: 2.11, 95% CI, 0.31-14.03, I ² =75.6%)	HCQ - No effectiveness (RR: 0.96, 95% CI, 0.76- 1.22), (RD: 0.00, 95% CI, - 0.18-0.18)	No considerable disease exacerbation difference HCQ (RR: 0.59, 95% CI, 0.04-7.79)	Higher risk of events HCQ (OR: 4.01, 95% CI, 1.17-13.84
	HCQ+AZI	Higher mortality in HCQ+AZI (RR 2.46, 95% CI 1.4-4.3)	-	HCQ +AZI - No significant difference with control (RR 2.15, 95%Cl 0.31 - 14.77)		
Chacko (20 May 2020) SRMA	HCQ	No significant difference in mortality (OR: 1.41, 95% CI: 0.76 – 2.62)	-	No significant different between the HCQ and control groups (OR: 1.13, CI: 0.26–5.01; p = 0.87)	No difference in clinical worsening (OR 1.1, 95% CI: 0.6–2.02).	Higher risk of adverse events in HCQ arm (OR: 4.1, Cl: 1.42 – 11.88; p = 0.009)
Yang (14 May 2020) SRMA	HCQ+AZI	Increased mortality in HCQ +/- AZI (OR 2.5 (95% CI 1.4 - 4.5)	-	No difference between HCQ alone vs. control (OR = 1.74 95% CI 0.51 - 5.91)	No significant difference between HCQ alone versus Control (OR = 1.37, 95% CI 0.09 - 21.97)	
	HCQ	HCQ alone was associated with increased mortality (OR 2.98 (95%CI 1.6 – 5.7)	-	No difference between HCQ with or without AZI vs control (OR = 1.95, 95% CI 0.19 - 19.73)	No difference between HCQ+AZI versus Control (OR = 1.00, 95% CI 0.27 – 3.75)	
Singh (7 May 2020) SRMA	HCQ	Higher mortality in HCQ arm (RR, 2.17; 95% 1.32 to 3.57)	No difference in transfer to the ICU (20.2 vs 22.1%; RR 0.91, 0.47– 1.80)	No benefit with HCQ (RR, 1.05; 95% CI, 0.79 to 1.38; p=0.74)	Improvement in pneumonia with HCQ (80.6 vs 54.8%, p=0.048), chest CT with HCQ (61.3 vs 16.1%)	1 study reported no adverse events. 1 reported no cardiac toxicity although it did not report how they assessed this. 7 other studies reported moderate to large increases in occurrence of adverse events

Sarma (13 April 2020) SRMA	HCQ+AZI	No difference in death or clinical worsening between treatment and control group (OR, 1.37, 95% CI, 0.09-21.97)	-	No difference in virological cure 2.37; 95% CI, [0.13-44.53] Higher virological cure in 1 study while others	2 studies found shorter time for body temperature normalization and the number of cough days. 3 studies reported no difference in clinical worsening OR, 1.37 (95% CI, 0.09-21.97).	Reported adverse events but No significant difference on all studies (OR, 2.19; 95% CI, [0.59-8.18]) Reported adverse events and QTc
				reported moderate effect of the combination		prolongation. 1 study found no signs of cardiac toxicity
Wang (1 June 2020) SR	HCQ-AZI	One study had no deaths, second study had lower mortality in HCQ-AZ group, but was statistically non-significant.	Marginally lower percentage in HCQ were transferred to ICU but differences were not significant		HCQ improved pneumonia: 80.6% vs 54.8%; (1 study), CQ reduced exacerbation of pneumonia, improved lung imaging, promoted virological clearance, and shortened disease course. Poor clinical outcome significantly associated with greater severity (OR 10.05) in one study.	More adverse events in HCQ and CQ than control like QTc interval prolongation. 2 studies reported no serious adverse events
Takla (30 May 2020) SR	CQ/HCQ	60% of studies reported no difference on mortality, 30% reported higher mortality in the HCQ group, 10% reported reduced mortality in HCQ group	No difference in need for mechanical ventilation, and transfer to an intensive care unit	67% of studies showed significant higher viral clearance, 33% no difference	-	A higher probability of adverse events in 82% of the studies
Das (28 May 2020) SR	HCQ	Reported no significant effect of HCQ on death	Reported no significant effect of HCQ on intubation	5 studies (1269 participants) reported good virological and clinical outcomes in the HCQ arm 5 studies (808 participants) showed negative or equivocal results	Reported "good virological and clinical outcomes in the HCQ arm"	4 studies (1207 participants) reported HCQ as safe with mild adverse events. 2 studies (101 participants) reported QT prolongation associated with HCQ treatment 5 studies (859 participants) reported HCQ associated with serious adverse events

Hernandez (27 May 2020) SR	HCQ CQ	1 study reported no deaths, 2 studies found decreases in mortality, 2 found no change in mortality, 4 found moderate to large increases in mortality	2 studies reported CQ/HCQ had increased need for ICU admission, intubation and/mechanical ventilation. 3 studies reported no effect of CQ/HCQ on ICU, intubation or need for mechanical ventilation	2 studies reported moderate to large increases in virologic clearance for the CQ/HCQ arm. 3 studies found no difference or effect. 1 study found large decreases of virologic clearance in the CQ/HCQ arm	1 study reported increased progression of the disease (progressing to need respiratory support), 1 study reported fewer participants in HCQ had disease progression and others had 1.0- and 1.1-day reduction in fever and cough. 3 studies found no effect.	6 studies reported modest to large increase in adverse events and QTc prolongation in HCQ alone and HCQ+AZI group. 1 study reported both in adverse events and 1 study reported no difference and insufficient evidence of risk of adverse events
Rodrigo (16 May 2020) SR	CQ HCQ	Mortality higher in higher dose of CQ arm (15% vs 39%, p=0.03)	-	No statistically significant difference by day 14 of illness (10/10 in CQ group vs. 11/12 in Lopinavir). The other study terminated early	-	-
				3 studies reported no statistical difference in clearance of viremia 1 study reported statistical significance (70% in HCQ group vs. 12.5% in placebo group, p=0.001)	-	-
Suranagi (13 May 2020) SR	HCQ	HCQ increased risk of death	1 study reported intubations, but No significant effect of HCQ on risk of either mechanical ventilation or intubation	3 studies reported HCQ reduced viral load and effect reinforced by Azithromycin. 1 study reported no effect on viral clearance	HCQ reduced duration of illness and improved pneumonia and pulmonary image changes	-
Chowdhury (28 April 2020) SR	CQ HCQ	-	-	Better virological clearance in in the CQ/HCQ arm than control (standard care/Lopinavir/ritonavir arm).	Improved pneumonia per chest CT and reduced progression to severe illness. 2 studies reported no significant different in alleviating or increasing severity of disease	Adverse effects CQ arm but not in Lopinavir/ritonavir arm, (n= 1 study), HCQ arm (Adverse events: 30% vs 8.8 %). 1 study found some minor adverse events in HCQ arm. 1 study sound no significant difference on adverse events between groups.
Jankelson (31 May 2020) SR	CQ/HCQ	-	-	-	-	QTc prolongation in 40 participants Ventricular arrythmia reported in 2 participants, first degree AV

			block developed in
			1 and LBBB in
			another patient

Supplementary Table S7. Limitations and conclusions from reviews

Supplementary Table 57. Limitations and conclusions from reviews				
Author name & date	Review Conclusion	Limitations of the review		
Shamshirian (28 May 2020)	No clinical benefits regarding HCQ treatment with/without azithromycin for COVID-19 participants	Few included studies (6 studies) with small sample sizes in the meta-analysis		
Chacko (20 May 2020)	Meta-analysis does not support the treatment of COVID-19 infection with HCQ	Small studies, small sample sizes, different outcome measurements and endpoints measured at different intervals		
Yang (14 May 2020)	HCQ with or without AZI are beneficial for treatment of COVID-19 participants, but may also have higher mortality	Few included studies with small sample sizes.		
Singh (7 May 2020)	While no benefit on viral clearance demonstrated by HCQ, a significant 2-fold increase in mortality with the HCQ warrants its use, if at all, with extreme caution.	Small number of participants overall, combining the results of RCT with other non-randomized studies.		
Sarma (13 April 2020)	Treatment with HCQ may result in reducing radiological progression with comparable safety	Few studies, small sample sizes, and several studies without controls		
Wang (1 June 2020)	No solid evidence supporting the efficacy and safety of HCQ and CQ as a treatment for COVID-19 with or without azithromycin	Search not comprehensive, only searched 2 English databases, few studies with small sample sizes		
Jankelson (31 May 2020)	Compelling evidence that CQ & HCQ induce significant QTc prolongation and can be potential risk factors of arrythmia.	Small number of studies, small sample sizes. Efficacy outcomes not part of scope of review		
Takla (30 May 2020)	Relative to standard in-hospital management of symptoms, the use of CQ and HCQ to treat hospitalised COVID-19 has likely been unsafe	Data synthesize by describing percentage of studies with outcome not optimal		
Das (28 May 2020)	Inconclusive evidence of HCQ efficacy and safety	Lack of data from well-designed RCTs		
Hernandez (27 May 2020)	Insufficient and often conflicting evidence on the benefits and harms of using hydroxychloroquine or chloroquine to treat COVID-19.	There were few controlled studies, and control for confounding was inadequate in observational studies.		
Rodrigo (16 May 2020)	Role of CQ & HCQ in covid19 is yet unclear and needs to be assessed by well-designed double-blind clinical trails	Small number of studies that were not similar hence a meta-analysis was not performed		
Suranagi (13 May 2020)	Current evidence stands inadequate to support the use of hydroxychloroquine in pharmacotherapy of COVID-19	Small studies with weak study designs		
Chowdhury (28 April 2020)	No enough data to support the routine use of either HCQ or CQ for treatment of COVID19	Narrative review. Indiscriminate inclusion criteria		

Random Effects Models

Mortality – random effects model

		Odds Ratio	%
Study ID		(95% CI)	Weight
Tang et al. 2020		1.00 (0.02, 51.05)	0.12
Gautret et al. 2020	←	1.94 (0.07, 50.56)	0.18
Chen J et al. 2020	\longleftrightarrow	1.00 (0.02, 53.66)	0.12
Horby et al. 2020	-	1.10 (0.96, 1.26)	99.34
Mitjà et al. 2020	←	1.15 (0.02, 58.54)	0.12
Chen C. P. et al. 2020	←	0.58 (0.01, 31.16)	0.12
Overall, DL ($I^2 = 0.0\%$, p = 0.999)	\Diamond	1.10 (0.96, 1.26)	100.00

NOTE: Weights are from random-effects model

Mortality – excluding Horby et al. (2020)

NOTE: Weights are from Doi's Quality Effects model

Study ID	Odds Ratio (95% CI)	% Weight
Tang et al. 2020	← → 1.00 (0.02, 51.05)	21.83
Gautret et al. 2020	← 1.94 (0.07, 50.56)	15.61
Chen J et al. 2020	1.00 (0.02, 53.66)	19.99
Mitjà et al. 2020	← → 1.15 (0.02, 58.54)	21.89
Chen C. P. et al. 2020	← → 0.58 (0.01, 31.16)	20.69
Overall, QE ($I^2 = 0.0\%$, p = 0.994)	1.02 (0.18, 5.86)	100.00
	.8 1 1.25	

ICU – random effects model

Study ID		Odds Ratio (95% CI)	% Weight
Gautret	<	> 4.91 (0.24, 101.66)	0.59
Horby et al. 2020	+	1.11 (0.88, 1.40)	99.06
Mitjà et al. 2020	<	→ 1.15 (0.02, 58.54)	0.35
Overall, DL ($l^2 = 0.0\%$, p = 0.630)	\Leftrightarrow	1.12 (0.89, 1.41)	100.00
	.5 1 2	<u> </u>	

NOTE: Weights are from random-effects model

Virological cure – random effects

		Odds Ratio (95% CI)	% Weight
		11.20 (2.09, 60.04)	21.13
< 	\longrightarrow	0.46 (0.04, 5.75)	12.09
< 	•>	1.20 (0.52, 2.81)	38.23
< 	\rightarrow	2.74 (0.10, 74.87)	7.74
←	\rightarrow	1.42 (0.26, 7.76)	20.80
		1.90 (0.70, 5.13)	100.00
	-	***	(95% CI) 11.20 (2.09, 60.04) 0.46 (0.04, 5.75) 1.20 (0.52, 2.81) 2.74 (0.10, 74.87) 1.42 (0.26, 7.76)

NOTE: Weights are from random-effects model; continuity correction applied to studies with zero cells

Virological cure – without Gautret

% Weight
5.75) 7.77
2.81) 70.41
74.87) 4.64
7.76) 17.18
2.43) 100.00

NOTE: Weights are from Doi's Quality Effects model; continuity correction applied to studies with zero cells

Disease worsening - random effects model

Study ID		Odds Ratio (95% CI)	% Weight
Chen J 2020		3.21 (0.12, 85.20)	16.58
Chen Z 2020	 	10.31 (0.53, 200.18)	19.44
Mitjà et al. 2020		0.83 (0.32, 2.13)	63.99
Overall, DL ($l^2 = 31.9\%$, p = 0.230)	\Leftrightarrow	1.69 (0.38, 7.49)	100.00
,	.125 1	1 8	

NOTE: Weights are from random-effects model; continuity correction applied to studies with zero cells

Study ID		Odds Ratio (95% CI)	% Weight
Chen J 2020	*	1.45 (0.26, 8.01)	20.46
Chen Z 2020		5.34 (0.25, 115.89)	11.44
Tang w 2020		4.47 (1.77, 11.31)	27.15
Huang 2020	→	25.00 (1.17, 535.24)	11.50
Mitjà et al. 2020	>	26.47 (14.35, 48.82)	29.45
Overall, DL ($l^2 = 76.6\%$, p = 0.002)		7.46 (2.02, 27.49)	100.00
.0625	 		

Supplementary Fig. 3: Doi Plots and LFK Index

3A: Mortality

3B: ICU Admission

3C: Virological cure

3D: Disease Exacerbation

3E: Adverse events

